{br} STUCK with your assignment? {br} When is it due? {br} Get FREE assistance. Page Title: {title}{br} Page URL: {url}
UK: +44 748 007-0908, USA: +1 917 810-5386 [email protected]

Chapter 1: Buildings
D1: Building Structural Types

The following descriptions are from FEMA 356: Pre-standard and Commentary for the Seismic Rehabilitation of Buildings.  They are the same basic descriptions and identifying symbols as found also in FEMA 310: Handbook for the Seismic Evaluation of Buildings.
Description of Model Building Types
•    Wood Light Frame:  W1: W1A:
•    Wood Frames, Commercial and Industrial:  W2:
•    Steel Moment Frames:  S1: S1A:
•    Steel Braced Frames:  S2:
•    Steel Light Frames:  S3:
•    Steel Frames with Concrete Shear Walls:  S4:
•    Steel Frame with Infill Masonry Shear Walls:  S5: S5A:
•    Concrete Moment Frames:  C1:
•    Concrete Shear Wall Buildings:  C2: C2A:
•    Concrete Frame with Infill Masonry Shear Walls:  C3: C3A:
•    Precast/Tilt-up Concrete Shear Wall Buildings:  PC1: PC1A:
•    Precast Concrete Frames:  PC2: PC2A:
•    Reinforced Masonry Bearing Wall Buildings with Flexible Diaphragms:  RM1:
•    Reinforced Masonry Bearing Wall Buildings with Stiff Diaphragms:  RM2:
•    Unreinforced Masonry Bearing Wall Buildings:  URM: URMA:
________________________________________
________________________________________
Wood Light Frame :
W1: These buildings are single or multiple family dwellings of one or more stories in height. Building loads are light and the framing spans are short. Floor and roof framing consists of wood joists or rafters on wood studs spaced no more than 24 inches apart. The first floor framing is supported directly on the foundation, or is raised up on cripple studs and post and beam supports. The foundation consists of spread footings constructed on concrete, concrete masonry block, or brick masonry in older construction. Chimneys, when present, consist of solid brick masonry, masonry veneer, or wood frame with internal metal flues. Lateral forces are resisted by wood frame diaphragms and shear walls. Floor and roof diaphragms consist of straight or diagonal lumber sheathing, tongue and groove planks, oriented strand board, or plywood. Shear walls consist of straight or lumber sheathing, plank siding, oriented strand board, plywood, stucco, gypsum board, particle board, or fiberboard. Interior partitions are sheathed with plaster or gypsum board.

W1A: These buildings are multi-story, similar in construction to W1 buildings, but have openings in the lowest level exterior walls framed with post-and-beam construction.
BACK TO TOP – Index of Building Types
________________________________________
Wood Frames, Commercial and Industrial
W2: These buildings are commercial or industrial buildings with a floor area of 5,000 square feet or more. There are few, if any, interior walls. The floor and roof framing consists of wood or steel trusses, glulam or steel beams, and wood posts or steel columns. Lateral forces are resisted by wood diaphragms and exterior stud walls sheathed with plywood, oriented strand board, stucco, plaster, straight or diagonal wood sheathing, or braced with rod bracing. Wall openings for storefronts and garages, when present, are framed by post-and-beam framing.
BACK TO TOP – Index of Building Types
________________________________________
Steel Moment Frames
S1: These buildings consist of a frame assembly of steel beams and steel columns. Floor and roof framing consists of cast-in-place concrete slabs or metal deck with concrete fill supported on steel beams, open web joists, or steel trusses. Lateral forces are resisted by steel moment frames that develop their stiffness through rigid or semi-rigid beam-column connections. When all connections are moment-resisting connections, the entire frame participates in lateral force resistance. When only selected connections are moment-resisting connections, resistance is provided along discrete frame lines. Columns may be oriented so that each principal direction of the building has columns resisting forces in strong axis bending. Diaphragms consist of concrete or metal deck with concrete fill and are stiff relative to the frames. When the exterior of the structure is concealed, walls consist of metal panel curtain walls, glazing, brick masonry, or precast concrete panels. When the interior of the structure is finished, frames are concealed by ceilings, partition walls, and architectural column furring. Foundations consist of concrete-spread footings or deep pile foundations.
S1A: These buildings are similar to S1 buildings, except that diaphragms consist of wood framing or untopped metal deck, and are flexible relative to the frames.

Steel Braced Frames
S2: These buildings have a frame of steel columns, beams, and braces. Braced frames develop resistance to lateral forces by the bracing action of the diagonal members. The braces induce forces in the associated beams and columns such that all elements work together in a manner similar to a truss, with all element stresses being primarily axial. When the braces do not completely triangulate the panel, some of the members are subjected to shear and flexural stresses; eccentrically braced frames are one such case. Diaphragms transfer lateral loads to braced frames. The diaphragms consist of concrete or metal deck with concrete fill and are stiff relative to the frames. S2A: These buildings are similar to S2 buildings, except that diaphragms consist of wood framing or untopped metal deck, and are flexible relative to the frames.

Steel Light Frames
S3: These buildings are pre-engineered and prefabricated with transverse rigid steel frames. They are one story in height. The roof and walls consist of lightweight metal, fiberglass or cementitious panels. The frames are designed for maximum efficiency and the beams and columns consist of tapered, built-up sections with thin plates. The frames are built in segments and assembled in the field with bolted or welded joints. Lateral forces in the transverse direction are resisted by the rigid frames. Lateral forces in the longitudinal direction are resisted by wall panel shear elements or rod bracing. Diaphragm forces are resisted by untopped metal deck, roof panel shear elements, or a system of tensiononly rod bracing.

Steel Frames with Concrete Shear Walls
S4: These buildings consist of a frame assembly of steel beams and steel columns. The floors and roof consist of cast-inplace concrete slabs or metal deck with or without concrete fill. Framing consists of steel beams, open web joists or steel trusses. Lateral forces are resisted by cast-in-place concrete shear walls. These walls are bearing walls when the steel frame does not provide a complete vertical support system. In older construction, the steel frame is designed for vertical loads only. In modern dual systems, the steel moment frames are designed to work together with the concrete shear walls in proportion to their relative rigidity. In the case of a dual system, the walls shall be evaluated under this building type and the frames shall be evaluated under S1 or S1A, Steel Moment Frames. Diaphragms consist of concrete or metal deck with or without concrete fill. The steel frame may provide a secondary lateral-forceresisting system depending on the stiffness of the frame and the moment capacity of the beam-column connections.

Steel Frame with Infill Masonry Shear Walls
S5: This is an older type of building construction that consists of a frame assembly of steel beams and steel columns. The floors and roof consist of cast-in-place concrete slabs or metal deck with concrete fill. Framing consists of steel beams, open web joists or steel trusses. Walls consist of infill panels constructed of solid clay brick, concrete block, or hollow clay tile masonry. Infill walls may completely encase the frame members, and present a smooth masonry exterior with no indication of the frame. The seismic performance of this type of construction depends on the interaction between the frame and infill panels. The combined behavior is more like a shear wall structure than a frame structure. Solidly infilled masonry panels form diagonal compression struts between the intersections of the frame members. If the walls are offset from the frame and do not fully engage the frame members, the diagonal compression struts will not develop. The strength of the infill panel is limited by the shear capacity of the masonry bed joint or the compression capacity of the strut. The post-cracking strength is determined by an analysis of a moment frame that is partially restrained by the cracked infill. The diaphragms consist of concrete floors and are stiff relative to the walls.

S5A: These buildings are similar to S5 buildings, except that diaphragms consist of wood sheathing or untopped metal deck, or have large aspect ratios and are flexible relative to the walls.
BACK TO TOP – Index of Building Types
________________________________________
Concrete Moment Frames
C1: These buildings consist of a frame assembly of cast-in-place concrete beams and columns. Floor and roof framing consists of cast-in-place concrete slabs, concrete beams, one-way joists, two-way waffle joists, or flat slabs. Lateral forces are resisted by concrete moment frames that develop their stiffness through monolithic beam-column connections. In older construction, or in regions of low seismicity, the moment frames may consist of the column strips of two-way flat slab systems. Modern frames in regions of high seismicity have joint reinforcing, closely spaced ties, and special detailing to provide ductile performance. This detailing is not present in older construction. Foundations consist of concrete-spread footings or deep pile foundations.

Concrete Shear Wall Buildings
C2: These buildings have floor and roof framing that consists of cast-in-place concrete slabs, concrete beams, one-way joists, two-way waffle joists, or flat slabs. Floors are supported on concrete columns or bearing walls. Lateral forces are resisted by cast-in-place concrete shear walls. In older construction, shear walls are lightly reinforced, but often extend throughout the building. In more recent construction, shear walls occur in isolated locations and are more heavily reinforced with concrete slabs and are stiff relative to the walls. Foundations consist of concrete-spread footings or deep pile foundations.
C2A: These buildings are similar to C2 buildings, except that diaphragms consist of wood sheathing, or have large aspect ratios, and are flexible relative to the walls.

Concrete Frame with Infill Masonry Shear Walls
C3: This is an older type of building construction that consists of a frame assembly of cast-in-place concrete beams and columns. The floors and roof consist of cast-in-place concrete slabs. Walls consist of infill panels constructed of solid clay brick, concrete block, or hollow clay tile masonry. The seismic performance of this type of construction depends on the interaction between the frame and the infill panels. The combined behavior is more like a shear wall structure than a frame structure. Solidly infilled masonry panels form diagonal compression struts between the intersections of the frame members. If the walls are offset from the frame and do not fully engage the frame members, the diagonal compression struts will not develop. The strength of the infill panel is limited by the shear capacity of the masonry bed joint or the compression capacity of the strut. The post-cracking strength is determined by an analysis of a moment frame that is partially restrained by the cracked infill. The shear strength of the concrete columns, after racking of the infill, may limit the semiductile behavior of the system. The diaphragms consist of concrete floors and are stiff relative to the walls.
C3A: These buildings are similar to C3 buildings, except that diaphragms consists of wood sheathing or untopped metal deck, or have large aspect ratios and are flexible relative to the walls.
BACK TO TOP – Index of Building Types
________________________________________
Precast/Tilt-up Concrete Shear Wall Buildings
PC1: These buildings are one or more stories in height and have precast concrete perimeter wall panels that are cast on site and tilted into place. Floor and roof framing consists of wood joists, glulam beams, steel beams or open web joists. Framing is supported on interior steel columns and perimeter concrete bearing walls. The floors and roof consist of wood sheathing or untapped metal deck. Lateral forces are resisted by the precast concrete perimeter wall panels. Wall panels may be solid, or have large window and door openings which cause the panels to behave more as frames than as shear walls. In older construction, wood framing is attached to the walls with wood ledgers. Foundations consist of concrete-spread footings or deep pile foundations.
PC1A: These buildings are similar to PC1 buildings, except that diaphragms consist of precast elements, cast-in-place concrete, or metal deck with concrete fill, and are stiff relative to the walls.

Precast Concrete Frames
PC2: These buildings consist of a frame assembly of precast concrete girders and columns with the presence of shear walls. Floor and roof framing consists of precast concrete planks, tees or double-tees supported on precast concrete girders and columns. Lateral forces are resisted by precast or cast-in-place concrete shear walls. Diaphragms consist of precast elements interconnected with welded inserts, cast-in-place closure strips, or reinforced concrete topping slabs.
PC2A: These buildings are similar to PC2 buildings, except that concrete shear walls are not present. Lateral forces are resisted by precast concrete moment frames that develop their stiffness through beam-column joints rigidly connected by welded inserts or cast-in-place concrete closures. Diaphragms consist of precast elements interconnected with welded inserts, cast-in-place closure strips, or reinforced concrete topping slabs.
BACK TO TOP – Index of Building Types
________________________________________
Reinforced Masonry Bearing Wall Buildings with Flexible Diaphragms
RM1: These buildings have bearing walls that consist of reinforced brick or concrete block masonry. Wood floor and roof framing consists of steel beams or open web joists, steel girders and steel columns. Lateral forces are resisted by the reinforced brick or concrete block masonry shear walls. Diaphragms consist of straight or diagonal wood sheathing, plywood, or untopped metal deck, and are flexible relative to the walls. Foundations consist of brick or concrete-spread footings.

Reinforced Masonry Bearing Wall Buildings with Stiff Diaphragms
RM2: These building are similar to RM1 buildings, except that the diaphragms consist of metal deck with concrete fill, precast concrete planks, tees, or double-tees, with or without a cast-in-place concrete topping slab, and are stiff relative to the walls. The floor and roof framing is supported on interior steel or concrete frames or interior reinforced masonry walls.

Unreinforced Masonry Bearing Wall Buildings
URM: These buildings have perimeter bearing walls that consist of unreinforced clay brick masonry. Interior bearing walls, when present, also consist of unreinforced clay brick masonry. In older construction, floor and roof framing consists of straight or diagonal lumber sheathing supported by wood joists, which are supported on posts and timbers. In more recent construction, floors consist of structural panel or plywood sheathing rather than lumber sheathing. The diaphragms are flexible relative to the walls. When they exist, ties between the walls and diaphragms consist of bent steel plates or government anchors embedded in the mortar joints and attached to framing. Foundations consist of brick or concrete-spread footings.
URMA: These buildings are similar to URM buildings, except that the diaphragms are stiff relative to the unreinforced masonry walls and interior framing. In older construction or large, multistory buildings, diaphragms consist of cast-in-place concrete. In regions of low seismicity, more recent construction consists of metal deck and concrete fill supported on steel framing.
BACK TO TOP – Index of Building TypesReturn to RISK ASSESSMENT list

Sample Answer

Compelling correspondence is essential to the achievement all things considered but since of the changing idea of the present working environments, successful correspondence turns out to be more troublesome, and because of the numerous impediments that will permit beneficiaries to acknowledge the plan of the sender It is restricted. Misguided judgments.In spite of the fact that correspondence inside the association is rarely completely open, numerous straightforward arrangements can be executed to advance the effect of these hindrances.

Concerning specific contextual analysis, two significant correspondence standards, correspondence channel determination and commotion are self-evident. This course presents the standards of correspondence, the act of general correspondence, and different speculations to all the more likely comprehend the correspondence exchanges experienced in regular daily existence. The standards and practices that you learn in this course give the premise to additionally learning and correspondence.

This course starts with an outline of the correspondence cycle, the method of reasoning and hypothesis. In resulting modules of the course, we will look at explicit use of relational connections in close to home and expert life. These incorporate relational correspondence, bunch correspondence and dynamic, authoritative correspondence in the work environment or relational correspondence. Rule of Business Communication In request to make correspondence viable, it is important to follow a few rules and standards. Seven of them are fundamental and applicable, and these are clear, finished, brief, obliging, right, thought to be, concrete. These standards are frequently called 7C for business correspondence. The subtleties of these correspondence standards are examined underneath: Politeness Principle: When conveying, we should build up a cordial relationship with every individual who sends data to us.

To be inviting and polite is indistinguishable, and politeness requires an insightful and amicable activity against others. Axioms are notable that gracious “pay of graciousness is the main thing to win everything”. Correspondence staff ought to consistently remember this. The accompanying standards may assist with improving courtesy:Preliminary considering correspondence with family All glad families have the mystery of progress. This achievement originates from a strong establishment of closeness and closeness. Indeed, through private correspondence these cozy family connections become all the more intently. Correspondence is the foundation of different affiliations, building solid partners of obedient devotion, improving family way of life, and assisting with accomplishing satisfaction (Gosche, p. 1). In any case, so as to keep up an amicable relationship, a few families experienced tumultuous encounters. Correspondence in the family is an intricate and alluring marvel. Correspondence between families isn’t restricted to single messages between families or verbal correspondence.

It is a unique cycle that oversees force, closeness and limits, cohesiveness and flexibility of route frameworks, and makes pictures, topics, stories, ceremonies, rules, jobs, making implications, making a feeling of family life An intelligent cycle that makes a model. This model has passed ages. Notwithstanding the view as a family and family automatic framework, one of the greatest exploration establishments in between family correspondence centers around a family correspondence model. Family correspondence model (FCP) hypothesis clarifies why families impart in their own specific manner dependent on one another ‘s psychological direction. Early FCP research established in media research is keen on how families handle broad communications data. Family correspondence was perceived as an exceptional scholastic exploration field by the National Communications Association in 1989. Family correspondence researchers were at first impacted by family research, social brain science, and relational hypothesis, before long built up the hypothesis and began research in a family framework zeroed in on a significant job. Until 2001, the primary issue of the Family Communication Research Journal, Family Communication Magazine, was given. Family correspondence is more than the field of correspondence analysts in the family. Examination on family correspondence is normally done by individuals in brain science, humanism, and family research, to give some examples models. However, as the popular family correspondence researcher Leslie Baxter stated, it is the focal point of this intelligent semantic creation measure making the grant of family correspondence special. In the field of in-home correspondence, correspondence is normally not founded on autonomous messages from one sender to one beneficiary, yet dependent on the dynamic interdependency of data shared among families It is conceptualized. The focal point of this methodology is on the shared trait of semantic development inside family frameworks. As such, producing doesn’t happen in vacuum, however it happens in a wide scope of ages and social exchange.

Standards are rules end up being followed when performing work to agree to a given objective. Hierarchical achievement relies significantly upon compelling correspondence. So as to successfully impart, it is important to follow a few standards and rules. Coming up next are rules to guarantee powerful correspondence: clearness: lucidity of data is a significant guideline of correspondence. For beneficiaries to know the message plainly, the messages ought to be sorted out in a basic language. To guarantee that beneficiaries can without much of a stretch comprehend the importance of the message, the sender needs to impart unmistakably and unhesitatingly so the beneficiary can plainly and unquestionably comprehend the data.>

Our customer support team is here to answer your questions. Ask us anything!